Recently published - More

Abstract

Inadequate pancreatic β cell function underlies type 1 and type 2 diabetes mellitus. Strategies to expand functional cells have focused on discovering and controlling mechanisms that limit the proliferation of human β cells. Here, we developed an engraftment strategy to examine age-associated human islet cell replication competence and reveal mechanisms underlying age-dependent decline of β cell proliferation in human islets. We found that exendin-4 (Ex-4), an agonist of the glucagon-like peptide 1 receptor (GLP-1R), stimulates human β cell proliferation in juvenile but not adult islets. This age-dependent responsiveness does not reflect loss of GLP-1R signaling in adult islets, since Ex-4 treatment stimulated insulin secretion by both juvenile and adult human β cells. We show that the mitogenic effect of Ex-4 requires calcineurin/nuclear factor of activated T cells (NFAT) signaling. In juvenile islets, Ex-4 induced expression of calcineurin/NFAT signaling components as well as target genes for proliferation-promoting factors, including NFATC1, FOXM1, and CCNA1. By contrast, expression of these factors in adult islet β cells was not affected by Ex-4 exposure. These studies reveal age-dependent signaling mechanisms regulating human β cell proliferation, and identify elements that could be adapted for therapeutic expansion of human β cells.

Authors

Chunhua Dai, Yan Hang, Alena Shostak, Greg Poffenberger, Nathaniel Hart, Nripesh Prasad, Neil Phillips, Shawn E. Levy, Dale L. Greiner, Leonard D. Shultz, Rita Bottino, Seung K. Kim, Alvin C. Powers

×

Abstract

Skeletal muscle is a key organ in energy homeostasis owing to its high requirement for nutrients. Heterotrimeric G proteins converge signals from cell-surface receptors to potentiate or blunt responses against environmental changes. Here, we show that muscle-specific ablation of Gα13 in mice promotes reprogramming of myofibers to the oxidative type, with resultant increases in mitochondrial biogenesis and cellular respiration. Mechanistically, Gα13 and its downstream effector RhoA suppressed nuclear factor of activated T cells 1 (NFATc1), a chief regulator of myofiber conversion, by increasing Rho-associated kinase 2–mediated (Rock2-mediated) phosphorylation at Ser243. Ser243 phosphorylation of NFATc1 was reduced after exercise, but was higher in obese animals. Consequently, Gα13 ablation in muscles enhanced whole-body energy metabolism and increased insulin sensitivity, thus affording protection from diet-induced obesity and hepatic steatosis. Our results define Gα13 as a switch regulator of myofiber reprogramming, implying that modulations of Gα13 and its downstream effectors in skeletal muscle are a potential therapeutic approach to treating metabolic diseases.

Authors

Ja Hyun Koo, Tae Hyun Kim, Shi-Young Park, Min Sung Joo, Chang Yeob Han, Cheol Soo Choi, Sang Geon Kim

×

Abstract

The short-limbed dwarfism metaphyseal chondrodysplasia type Schmid (MCDS) is linked to mutations in type X collagen, which increase ER stress by inducing misfolding of the mutant protein and subsequently disrupting hypertrophic chondrocyte differentiation. Here, we show that carbamazepine (CBZ), an autophagy-stimulating drug that is clinically approved for the treatment of seizures and bipolar disease, reduced the ER stress induced by 4 different MCDS-causing mutant forms of collagen X in human cell culture. Depending on the nature of the mutation, CBZ application stimulated proteolysis of misfolded collagen X by either autophagy or proteasomal degradation, thereby reducing intracellular accumulation of mutant collagen. In MCDS mice expressing the Col10a1.pN617K mutation, CBZ reduced the MCDS-associated expansion of the growth plate hypertrophic zone, attenuated enhanced expression of ER stress markers such as Bip and Atf4, increased bone growth, and reduced skeletal dysplasia. CBZ produced these beneficial effects by reducing the MCDS-associated abnormalities in hypertrophic chondrocyte differentiation. Stimulation of intracellular proteolysis using CBZ treatment may therefore be a clinically viable way of treating the ER stress–associated dwarfism MCDS.

Authors

Lorna A. Mullan, Ewa J. Mularczyk, Louise H. Kung, Mitra Forouhan, Jordan M.A. Wragg, Royston Goodacre, John F. Bateman, Eileithyia Swanton, Michael D. Briggs, Raymond P. Boot-Handford

×

Abstract

P-element–induced wimpy testes (Piwi) proteins are known for suppressing retrotransposon activation in the mammalian germline. However, whether Piwi protein or Piwi-dependent functions occur in the mammalian soma is unclear. Contrary to germline-restricted expression, we observed that Piwi-like Miwi2 mRNA is indeed expressed in epithelial cells of the lung in adult mice and that it is induced during pneumonia. Further investigation revealed that MIWI2 protein localized to the cytoplasm of a discrete population of multiciliated airway epithelial cells. Isolation and next-generation sequencing of MIWI2-positive multiciliated cells revealed that they are phenotypically distinct from neighboring MIWI2-negative multiciliated cells. Mice lacking MIWI2 exhibited an altered balance of airway epithelial cells, demonstrating fewer multiciliated cells and an increase in club cells. During pneumococcal pneumonia, Miwi2-deficient mice exhibited increased expression of inflammatory mediators and increased immune cell recruitment, leading to enhanced bacterial clearance. Taken together, our data delineate MIWI2-dependent functions outside of the germline and demonstrate the presence of distinct subsets of airway multiciliated cells that can be discriminated by MIWI2 expression. By demonstrating roles for MIWI2 in airway cell identity and pulmonary innate immunity, these studies elucidate unanticipated physiological functions for Piwi proteins in somatic tissues.

Authors

Gregory A. Wasserman, Aleksander D. Szymaniak, Anne C. Hinds, Kazuko Yamamoto, Hirofumi Kamata, Nicole M.S. Smith, Kristie L. Hilliard, Claudia Carrieri, Adam T. Labadorf, Lee J. Quinton, Xingbin Ai, Xaralabos Varelas, Felicia Chen, Joseph P. Mizgerd, Alan Fine, Dónal O’Carroll, Matthew R. Jones

×

Abstract

Primary open-angle glaucoma (POAG) is often caused by elevated intraocular pressure (IOP), which arises due to increased resistance to aqueous humor outflow (AHO). Aqueous humor flows through Schlemm’s canal (SC), a lymphatic-like vessel encircling the cornea, and via intercellular spaces of ciliary muscle cells. However, the mechanisms underlying increased AHO resistance are poorly understood. Here, we demonstrate that signaling between angiopoietin (Angpt) and the Angpt receptor Tie2, which is critical for SC formation, is also indispensable for maintaining SC integrity during adulthood. Deletion of Angpt1/Angpt2 or Tie2 in adult mice severely impaired SC integrity and transcytosis, leading to elevated IOP, retinal neuron damage, and impairment of retinal ganglion cell function, all hallmarks of POAG in humans. We found that SC integrity is maintained by interconnected and coordinated functions of Angpt-Tie2 signaling, AHO, and Prox1 activity. These functions diminish in the SC during aging, leading to impaired integrity and transcytosis. Intriguingly, Tie2 reactivation using a Tie2 agonistic antibody rescued the POAG phenotype in Angpt1/Angpt2-deficient mice and rejuvenated the SC in aged mice. These results indicate that the Angpt-Tie2 system is essential for SC integrity. The impairment of this system underlies POAG-associated pathogenesis, supporting the possibility that Tie2 agonists could be a therapeutic option for glaucoma.

Authors

Jaeryung Kim, Dae-Young Park, Hosung Bae, Do Young Park, Dongkyu Kim, Choong-kun Lee, Sukhyun Song, Tae-Young Chung, Dong Hui Lim, Yoshiaki Kubota, Young-Kwon Hong, Yulong He, Hellmut G. Augustin, Guillermo Oliver, Gou Young Koh

×

Abstract

Peptide hormones are crucial regulators of many aspects of human physiology. Mutations that alter these signaling peptides are associated with physiological imbalances that underlie diseases. However, the conformational maturation of peptide hormone precursors (prohormones) in the ER remains largely unexplored. Here, we report that conformational maturation of proAVP, the precursor for the antidiuretic hormone arginine-vasopressin, within the ER requires the ER-associated degradation (ERAD) activity of the Sel1L-Hrd1 protein complex. Serum hyperosmolality induces expression of both ERAD components and proAVP in AVP-producing neurons. Mice with global or AVP neuron–specific ablation of Se1L-Hrd1 ERAD progressively developed polyuria and polydipsia, characteristics of diabetes insipidus. Mechanistically, we found that ERAD deficiency causes marked ER retention and aggregation of a large proportion of all proAVP protein. Further, we show that proAVP is an endogenous substrate of Sel1L-Hrd1 ERAD. The inability to clear misfolded proAVP with highly reactive cysteine thiols in the absence of Sel1L-Hrd1 ERAD causes proAVP to accumulate and participate in inappropriate intermolecular disulfide–bonded aggregates, promoted by the enzymatic activity of protein disulfide isomerase (PDI). This study highlights a pathway linking ERAD to prohormone conformational maturation in neuroendocrine cells, expanding the role of ERAD in providing a conducive ER environment for nascent proteins to reach proper conformation.

Authors

Guojun Shi, Diane Somlo, Geun Hyang Kim, Cristina Prescianotto-Baschong, Shengyi Sun, Nicole Beuret, Qiaoming Long, Jonas Rutishauser, Peter Arvan, Martin Spiess, Ling Qi

×

Abstract

Deficiency of the antidiuretic hormone arginine vasopressin (AVP) underlies diabetes insipidus, which is characterized by the excretion of abnormally large volumes of dilute urine and persistent thirst. In this issue of the JCI, Shi et al. report that Sel1L-Hrd1 ER–associated degradation (ERAD) is responsible for the clearance of misfolded pro–arginine vasopressin (proAVP) in the ER. Additionally, mice with Sel1L deficiency, either globally or specifically within AVP-expressing neurons, developed central diabetes insipidus. The results of this study demonstrate a role for ERAD in neuroendocrine cells and serve as a clinical example of the effect of misfolded ER proteins retrotranslocated through the membrane into the cytosol, where they are polyubiquitinated, extracted from the ER membrane, and degraded by the proteasome. Moreover, proAVP misfolding in hereditary central diabetes insipidus likely shares common physiopathological mechanisms with proinsulin misfolding in hereditary diabetes mellitus of youth.

Authors

Daniel G. Bichet, Yoann Lussier

×

Abstract

Glaucoma is a leading cause of blindness, with an estimated world-wide prevalence of 3.5% in members of the population older than 40 years of age. Elevated intraocular pressure as the result of abnormal resistance to aqueous humor drainage is a major contributing, and the only preventable, factor in glaucoma development. Schlemm’s canal (SC), a lymphatic-like vessel encircling the anterior portion of the eye, plays a key role in promoting aqueous humor outflow and maintenance of normal intraocular pressure. The risk of developing glaucoma increases with age; therefore, understanding mechanisms of SC maintenance and how aging affects SC function are of special importance, both for prevention and novel treatment approaches to glaucoma. Using a compelling array of genetic models, Kim et al. report in this issue of the JCI that continuous angiopoietin/TIE2 signaling is required for maintaining SC identity and integrity during adulthood and show that its age-related changes can be rescued by a TIE2 agonistic antibody.

Authors

Jeremiah Bernier-Latmani, Tatiana V. Petrova

×

Advertisement

September 2017

127 9 cover

September 2017 Issue

On the cover:
Differential requirements for TNF in allergic inflammation

In this issue of the JCI, Whitehead et al. demonstrate the differing requirements for TNF signaling in TLR ligand-driven and protease-driven allergic airway inflammation. They identify a specific requirement for TNF induction in mediating TLR ligand–mediated inflammatory responses. On this issue’s cover, a section of mouse lung shows CD11c positive pulmonary dendritic cells (green) and Th17 fate-mapping cells (red) adjacent to E-cadherin positive airways and alveoli (blue). Image credit: Miranda Lyons-Cohen.

×
Jci tm 2017 09

September 2017 JCI This Month

JCI This Month is a digest of the research, reviews, and other features published each month.

×

Review Series - More

Glia and Neurodegeneration

Series edited by Marco Colonna and David M. Holtzman

Glia are central nervous system cells that surround neurons and hold them in place, supply them with nutrients and oxygen, serve to insulate neurons from each other, and to remove pathogens and dead neurons. Historically, these cells have been considered less interesting than neurons; however, in the past decade, they have emerged as critical regulators of brain development and homeostasis and are now being appreciated as drivers of disease. Reviews in this series describe the role of glia and the associated glymphatic system in normal physiology, neuronal metabolism, prion diseases, Alzheimer’s disease, ALS, spinal cord injury, and neurodegenerative disease.

×